APRIL 2021

## CLASS XII

Marking Scheme - SUBJECT [THEORY]

\begin{tabular}{|c|c|c|}
\hline Q.NO. \& Answers \& \begin{tabular}{l}
Marks \\
(with \\
split \\
up)
\end{tabular} \\
\hline 1. \& 1:1 \& 1 \\
\hline 2. \& Pole strength \& 1 \\
\hline 3. \& (i)Decreases (ii) increases \& 1 \\
\hline 4. \& n type OR p type \& \(1 / 2+1 / 2\) \\
\hline 5. \& Velocity OR UV light \& 1 \\
\hline 6. \& 1:1 \& 1 \\
\hline 7. \& Boron /Cadmium OR 1:2 \& 1 \\
\hline 8. \& (i)Decreases (ii) increases OR 300 V \& 1 \\
\hline 9. \& Remains same \& \(1 / 2+1 / 2\) \\
\hline 10. \& Metal B. Explanation \& \(1 / 2+1 / 2\) \\
\hline 11. \& a \& \\
\hline 12. \& d \& \\
\hline 13. \& d \& \\
\hline 14. \& a \& \\
\hline 15. \& (1) c (2) d (3) c (4) a (5) a \& \\
\hline 16. \& (1) \(\mathrm{b} \quad\) (2) a (3) b (4) a (5) d \& \\
\hline 17. \& \begin{tabular}{l}
(a) Photodiode used in reverse bias - reason \\
(b) Distinguish between n type and p type - two points
\end{tabular} \& \[
1
\]
\[
1 / 2+1 / 2
\] \\
\hline 18. \& \begin{tabular}{l}
Figure \\
Derivation- (Snell's law on the basis of Huygen's wave theory when light is travelling from a denser to a rarer medium.) \\
OR \\
(6) \\
(ii)
\end{tabular} \& 1
1

1
1 <br>
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline 19 \& \begin{tabular}{l}
(a) When screen is moved away, \(D\) increases. As \(\beta=\lambda D / d\) \\
therefore width of the fringes increases. \\
(b) If \(s\) is size of the source and S is distant of source from the plane of the two slits, then for interference fringes to seen, the condition is \(s / S<\lambda / D\) \\
As source slit is brought closer to double slit plane, S decreases, the interference pattern gets less and less sharp. When the source is too close, the fringe separation remains fixed.
\end{tabular} \& \\
\hline 20. \& \begin{tabular}{l}
b) i) The soft iron coil in a galvanometer will make the field radial. Also, it increases the strength of the magnetic field. \\
ii) Current sensitivity in the galvanometer is given by, \(\frac{\theta}{1}=\frac{N B A}{K}\) Voltage sensitivity in the galvanometer is given by,
\[
\frac{\theta}{V}=\frac{\theta}{I R}=\left(\frac{n B A}{K}\right) \cdot \frac{1}{R}
\] \\
The above two equations imply that increasing the current sensitivity may not necessarily increase the voltage sensitivity.
\end{tabular} \& \\
\hline 21. \& \begin{tabular}{l}
(a) due to eddy current \\
(b) way to minimize eddy current
\end{tabular} \& \[
\begin{aligned}
\& 1 \\
\& 1 \\
\& \hline
\end{aligned}
\] \\
\hline 22. \& \begin{tabular}{l}
(a) Since the capacitors are connected in parallel we have,
\[
\begin{array}{ll} 
\& C=C_{1}+C_{2}+C_{3} \\
= \& (2+3+4) \times 10^{-12} \\
= \& 9 \times 10^{-12}=9 \mathrm{pF} \\
\& \mathrm{q}_{1}=\mathrm{C}_{1} \mathrm{~V} \\
= \& 2 \times 10^{-12} \times 100 \\
= \& 2 \times 10^{-10} \mathrm{c} \\
\mathrm{q}_{2}=\mathrm{c}_{2} \mathrm{~V} \\
=3 \times 10^{-12} \times 100 \\
=3 \times 10^{-10} \mathrm{C} \\
\& \mathrm{q}_{3}=\mathrm{C}_{3} \mathrm{~V} \\
=4 \times 10^{-12} \times 100 \\
\& =4 \times 10^{-10} \mathrm{C}
\end{array}
\] \\
OR \\
(a) \\
(b) Yes. Electric potential is zero at all points on equatorial line of electric dipole ,while electric field is non zero. (or any correct example )
\end{tabular} \& \(1 / 2\)

$111 / 2$ <br>
\hline
\end{tabular}

|  |  |  |
| :---: | :---: | :---: |
| 23. | Diagram of full wave rectifier $\mathrm{i} / \mathrm{p}$ and $\mathrm{o} / \mathrm{p}$ wave forms | $\begin{array}{\|l\|l\|} \hline 1 \\ 1 / 2+1 / 2 \\ \hline \end{array}$ |
| 24. | Three elements of earth's magnetic field At the poles <br> (a) definition - angle of dip <br> (b) poles equator | $\begin{aligned} & \hline 11 / 2 \\ & 1 / 2 \\ & \\ & 1 \\ & 1 / 2 \\ & 1 / 2 \end{aligned}$ |
| 25. | $\begin{aligned} \text { Fringe width } \beta & =\lambda \mathrm{D} / \mathrm{d} \\ & =5 \times 10^{-4} \mathrm{~m} \end{aligned}$ | $\begin{array}{l\|} \hline 1 \\ 1 \end{array}$ |
|  | SECTION C |  |
| 26. | At the distance of nearest approach $P E=K E$ $\frac{\mathrm{k}(\mathrm{ze})(2 \mathrm{e})}{\mathrm{r}_{0}}=4.5 \mathrm{MeV}=4.5 \times 10^{6} \times 1.6 \times 10^{-19} \mathrm{~J}$ $\mathrm{r}_{0}=\frac{\mathrm{k}(\mathrm{ze})(2 \mathrm{e})}{4.5 \times 1.6 \times 10^{-13}}$ $=\frac{9 \times 10^{9} \times(80) \times 2 \times\left(1.6 \times 10^{-19}\right)^{2}}{4.5 \times 1.6 \times 10^{-13}}=51.2 \times 10^{-15} \mathrm{~m}$ | $\begin{aligned} & 1 \\ & 2 \end{aligned}$ |
| 27. | Cells in parallel - expression for emf and resistance <br> OR <br> (a) constantan and manganin are used for making standard resistors <br> (b) connections between resistors in a meter bridge made of thick copper strips <br> (c) the balance point is obtained near the middle of the bridge wire in meter bridge experiments | $3$ $\begin{array}{\|l} 1 \\ 1 \\ 1 \end{array}$ |
| 28. | (i) metal Q <br> (ii) $E=h \vartheta_{0}=6.63 \times 10^{-34} \times 6 \times 10^{14}=3.97 \times 10^{-19} \mathrm{~J}$ <br> (iii)no change | 1 <br> 1 <br> 1 |

\begin{tabular}{|c|c|c|}
\hline 29 \& \begin{tabular}{l}
 \\
Marking regions
\end{tabular} \& 2

1 <br>

\hline 30. \& | Definition - self inductance |
| :--- |
| Derivation - energy stored in an inductor | \& <br>


\hline 31. \& | coherent sources of light -definition |
| :--- |
| two conditions for sustained interference pattern. |
| expression for the width of interference fringes(YDS) with diagram |
| OR |
| Lens maker formula derivation... |
| Fig - |
| Derivation | \& | 1 |
| :--- |
| $2+1$ |
| 1 |
| $1 / 2+1 / 2$ |
| 2 |
| 2 | <br>


\hline 32. \& | (a) Gauss's law statement |
| :--- |
| (b) the expression for electric field due to an infinitely long straight thin charged wire with diagram |
| Graph showing the variation of E with r |
| OR |
| (a) Definition electric dipole moment . |
| SI unit. |
| (b) Diagrammatic representation of the position of dipole in stable and unstable | \& | 1 |
| :--- |
| 1 |
| 3 $\begin{aligned} & 11 / 2 \\ & 31 / 2 \end{aligned}$ | <br>

\hline
\end{tabular}

|  | equilibrium <br> writing the expression for the torque acting on the dipole and potential energy of dipole in both <br> the cases | a) Faraday's law of electromagnetic induction- statement and mathematical expression <br> (b)Deducing an expression for the emf induced in the rod with figure <br> (c) expression for current induced in it. <br> Or |
| :--- | :--- | :--- |
| working of a step up transformer, with diagram. |  |  |
| expression for the secondary to primary voltage in terms of the number of turns in the two coil. |  |  |$\quad$| $11 / 2$ |
| :--- |

